

Chongqing University of Technology

DIGMN: Dynamic Intent Guided Meta Network for Differentiated User Engagement Forecasting in Online Professional Social Platforms

Feifan Li feili@linkedin.com LinkedIn Corporation

Shi Han shihan@microsoft.com Microsoft Research Lun Du* lun.du@microsoft.com Microsoft Research

Yushu Du yusdu@linkedin.com LinkedIn Corporation

Zi Li zili@linkedin.com LinkedIn Corporation

(WSDM-2023)

Reported by Zhaoze Gao

Qiang Fu qifu@microsoft.com Microsoft Research

Guangming Lu glu@linkedin.com LinkedIn Corporation

Chongqing University of Technology

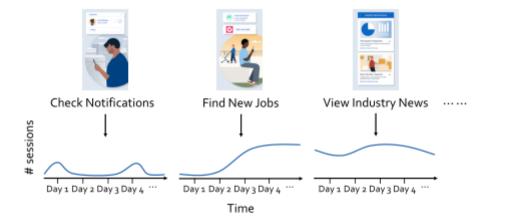
ATAI Advanced Technique of Artificial Intelligence

1. Introduction

2. Approach

3. Experiments

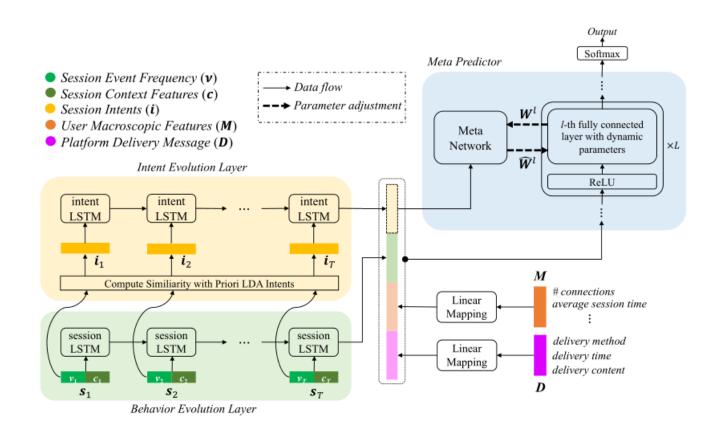
Introduction



Dynamic Intent Guided Meta Network (DIGMN), which can explicitly model user intent varying with time and perform differentiated user engagement forecasting.

Figure 1: Example of different user engagement patterns with different user intents.

Approach



$$U = \{u_1, u_2, ..., u_N\}$$
$$I = \{i_1, i_2, ..., i_M\}$$
User event. $e = (u, i, t)$

User session. $S = (u, c, \mathcal{E})$

User engagement. $\bar{s} = \frac{\# \text{ valid sessions}}{\# \text{ total days}} \quad \bar{d} = \frac{\# \text{ active days}}{\# \text{ total days}}$

Platform actions.
$$\mathcal{D} = (u, w, r, t)$$

 $\Pr(y_u | M_u, S_u, D_u; \Theta) \tag{1}$

user's macroscopic features M_u (e.g., the number of connections, the average number of sessions per day in the past period), session

 $S_u = \langle S_1, S_2, ..., S_T \rangle$ *T* is the number of sessions the latest platform delivery message D_u

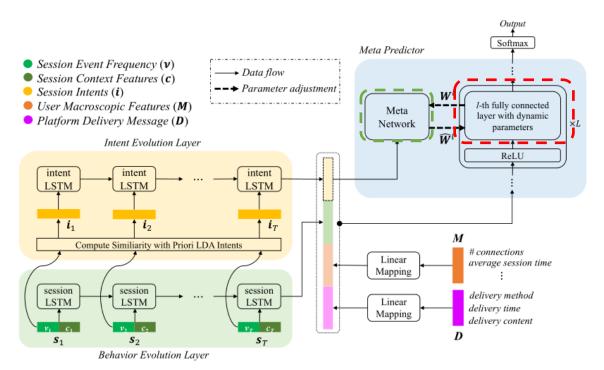


Figure 3: The framework of our proposed model. It consists of three main components: behavior evolution layer, intent evolution layer and a meta predictor.

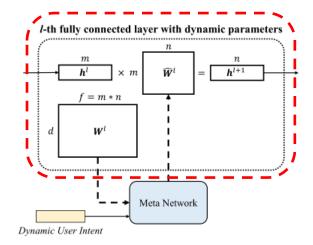


Figure 4: The *l*-th fully connected layers with dynamic parameters.

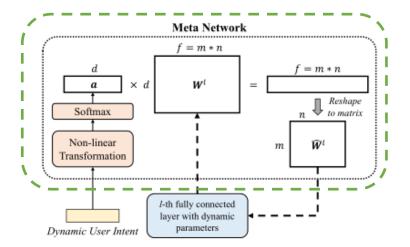
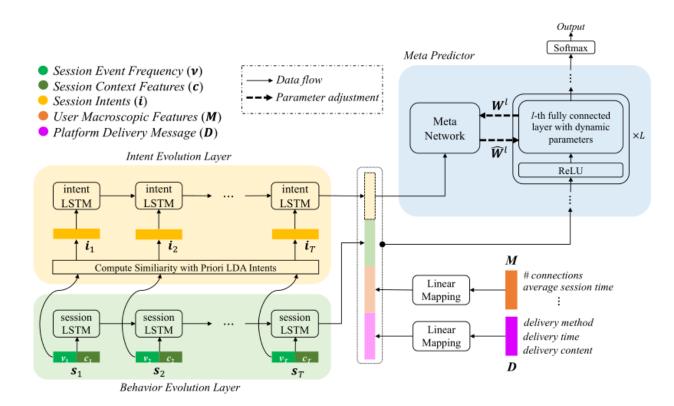


Figure 5: Meta Network.

Approach

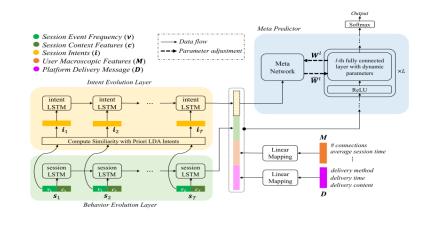


$$i_k = \frac{\boldsymbol{\nu} \cdot \boldsymbol{t}_k}{||\boldsymbol{\nu}|| \times ||\boldsymbol{t}_k||} \tag{2}$$

$$\boldsymbol{y} = F(\boldsymbol{x}, \boldsymbol{\Theta}) \tag{3}$$

$$\boldsymbol{y} = F(\boldsymbol{x}, \Theta^*) = F(\boldsymbol{x}, \phi(\boldsymbol{x}, \Theta))$$
(4)

$$\boldsymbol{h}^{l+1} = \widehat{\boldsymbol{W}}^l \cdot \boldsymbol{h}^l + \widehat{\boldsymbol{b}}^l \tag{5}$$



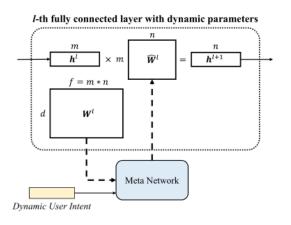
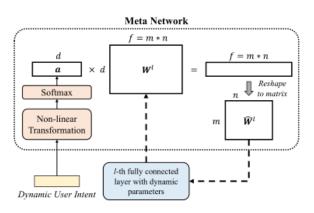


Figure 4: The *l*-th fully connected layers with dynamic pa-

rameters.



Approach

Figure 5: Meta Network.

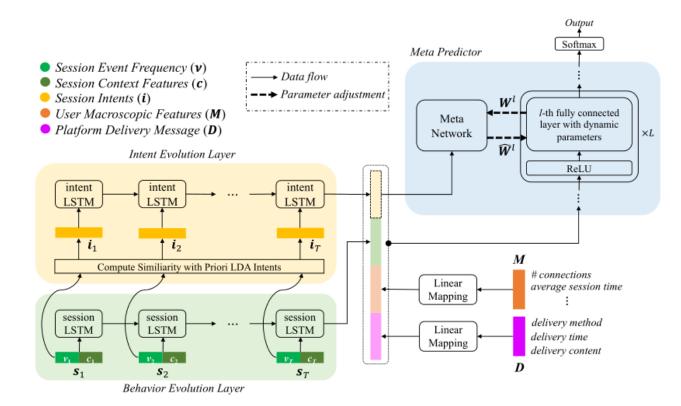
$$a = \text{Softmax}(W_2(\text{ReLU}(W_1\hat{i} + b_1)) + b_2)$$

s.t. $\sum_{i=1}^d a_i = 1, 0 < a_i < 1$ (6)

_

$$\widehat{\boldsymbol{W}}^{l} = \operatorname{Reshape}(\boldsymbol{a}^{T}\boldsymbol{W}^{l}) = \operatorname{Reshape}(\sum_{i=1}^{d} a_{i}\boldsymbol{W}_{i}^{l})$$
(7)
$$\boldsymbol{W}_{1}^{l}, \boldsymbol{W}_{2}^{l}, ..., \boldsymbol{W}_{d}^{l} \in \mathbb{R}^{(m*n)}$$
$$\boldsymbol{W}^{l} = [\boldsymbol{W}_{1}^{l}, \boldsymbol{W}_{2}^{l}, ..., \boldsymbol{W}_{d}^{l}]^{T} \in \mathbb{R}^{d \times (m*n)}$$
$$\lambda \cdot ||(\boldsymbol{W}^{l}(\boldsymbol{W}^{l})^{T} - \boldsymbol{I})||_{F}^{2}$$
(8)

$$\mathcal{L}_R = \sum_{l=1}^L ||(\boldsymbol{W}^l (\boldsymbol{W}^l)^T - \boldsymbol{I}) \odot (\boldsymbol{1} - \boldsymbol{I})||_F^2$$
(9)



$$\mathcal{L}_C = -\frac{1}{n} \sum_i \sum_c y_{ic} \log(\hat{y}_{ic}) \tag{10}$$

$$\mathcal{L} = \mathcal{L}_C + \beta \cdot \mathcal{L}_R \tag{11}$$

Table 1: Types of user events we collect on the platform.

Event ID	Event Type	Explanation		
1	Feed	view and react to updates		
2	Search	search for members, jobs, or other		
3	View Profile	view profiles of members or companies		
4	Jobs	view or apply for jobs		
5	PYMK	invite members to build connections		
6	Notification	check notifications		
7	Message	check or send messages		
8	Edit Profile	edit personal profile		
9	Share Content	share content		
10	Follow	follow members, companies, or other		

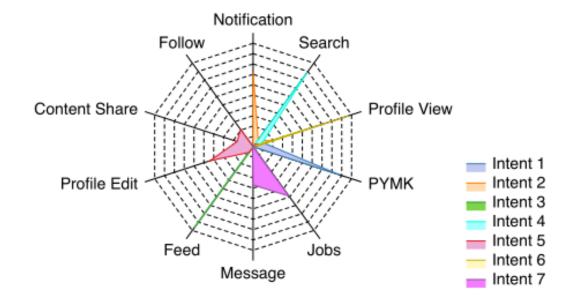


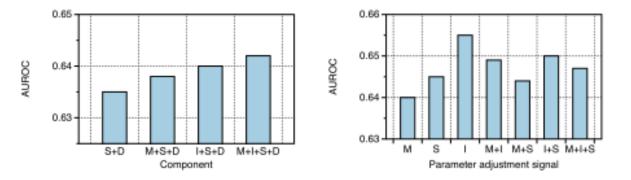
Figure 2: Basic user intents. There are 7 basic intents obtained by LDA, and we show the event weights that compose them.

Table 2: Labels of user engagement forecasting tasks.

-	Session-level Task		
$y = \begin{cases} -1, & \overline{d}_h > \overline{d}_f \\ 0, & \overline{d}_h = \overline{d}_f \\ 1, & \overline{d}_h < \overline{d}_f \end{cases}$	$y = \begin{cases} 0, & \overline{s}_h > \overline{s}_f \\ 1, & \overline{s}_h \le \overline{s}_f \end{cases}$		

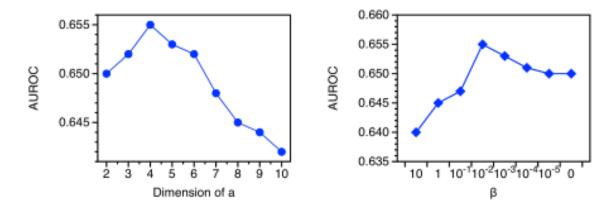
Table 3: Performance comparison on the classification of user engagement trends at the day-level and the session-level.

Task	Day-level	Session-level	
Model	Macro F1-Score	AUROC	
Feature-based model			
LR	0.446 ± 0.000	0.561 ± 0.000	
XGBoost	0.460 ± 0.001	0.569 ± 0.001	
End-to-end neural network model			
MLP	0.463 ± 0.002	0.571 ± 0.002	
Activity LSTM	0.518 ± 0.001	0.605 ± 0.001	
Temporal GCN-LSTM	0.522 ± 0.002	0.600 ± 0.003	
Deep Multi-channel	0.575 ± 0.002	0.633 ± 0.002	
DIGMN (ours)	0.592 ± 0.001	0.655 ± 0.001	
Improvements	2.96%	3.48%	



(a) Ablation study on different model (b) Ablation study on different paramecomponents. ter adjustment signal of DIGMN.

Figure 6: Ablation study of components and different parameter adjustment signal. *M*, *D*, *S*, *I* represent macroscopic features, the latest platform delivery message, session features and intent features respectively.



(a) Prediction performance of different (b) Prediction performance of different dimension of a. β .

Figure 7: Hyperparameter sensitivity.

Table 5: Prediction performance of different L.

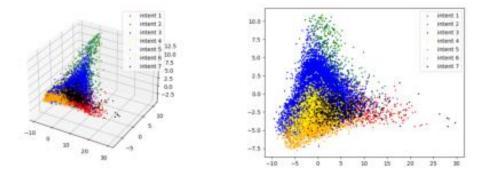
# FC-D Layers	# Hidden Units	AUROC	
L = 1	-	0.645 ± 0.001	
L = 2	{64}	0.651 ± 0.001	
L = 3	{64,32}	0.655 ± 0.001	
L = 4	{64,32,32}	0.652 ± 0.001	
L = 5	{64,32,32,32}	0.646 ± 0.002	

Table 6: Prediction performance of different methods to extract session intents.

Methods to extract session intents	AUROC		
End-to-end learning	0.644 ± 0.001		
Prior intents	0.655 ± 0.001		

Table 4: Performance comparison of DIGMN with dynamic predictor and DIGMN with static predictor.

Task Model	# Hidden Units in Predictor	Day-level		Session-level	
		Macro F1-Score	# Parameters	AUROC	# Parameters
DIGMN (Static)	{64, 32}	0.580 ± 0.001	18.8K	0.642 ± 0.001	18.7K
DIGMN (Static)	{160, 96}	0.585 ± 0.001	38.6K	0.645 ± 0.002	38.5K
DIGMN (Dynamic)	{64, 32}	0.592 ± 0.001	40.8K	0.655 ± 0.001	40.7K



(a) The distribution of user dynamic in-(b) The distribution of user dynamic intent in to 3-dimensional space.

Figure 8: The visualization of dynamic user intent representation. We apply zero-mean normalization to the input highdimensional vectors before using PCA for dimension reduction.

Thank you!